Apelin decreases the SR Ca2+ content but enhances the amplitude of [Ca2+]i transient and contractions during twitches in isolated rat cardiac myocytes.
نویسندگان
چکیده
Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, the effect of apelin on sarcoplasmic reticulum (SR) Ca2+ content and its influence on intracellular Ca2+ transient during excitation-contraction coupling remains poorly understood. In the present study, we determined the effect of apelin on Ca2+ transient and contractions in isolated rat cardiomyocytes. When compared with control, treatment with apelin caused a 55.7 +/- 13.9% increase in sarcomere fraction shortening and a 43.6 +/- 4.56% increase in amplitude of electrical-stimulated intracellular Ca2+ concentration (E[Ca2+]i) transients (n = 14, P < 0.05). But SR Ca2+ content measured by caffeine-induced [Ca2+]i (C[Ca2+]i) transient was decreased 8.41 +/- 0.92% in response to apelin (n = 14, P < 0.05). Na+/Ca2+ exchanger (NCX) function was increased since half-decay time of C[Ca2+]i was decreased 16.22 +/- 1.36% in response to apelin. Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) activity was also increased by apelin. These responses can be partially or completely blocked by chelerythrine chloride, a PKC inhibitor. In addition, to confirm our data, we used indo-1 as another Ca2+ indicator and rapid cooling as another way to measure SR Ca2+ content, and we observed similar results. So we conclude that apelin has a positive inotropic effect on isolated myocytes, and increased amplitude of E[Ca2+]i is at least partially involved in the mechanism. NCX function and SERCA activity are increased by apelin, and the SR Ca2+ content is decreased by apelin during twitches. PKC played an important role in these signaling mechanisms.
منابع مشابه
Apelin decreases the SR Ca content but enhances the amplitude of [Ca ]i transient and contractions during twitches in isolated rat cardiac myocytes
Wang C, Du JF, Wu F, Wang HC. Apelin decreases the SR Ca content but enhances the amplitude of [Ca ]i transient and contractions during twitches in isolated rat cardiac myocytes. Am J Physiol Heart Circ Physiol 294: H2540–H2546, 2008. First published April 18, 2008; doi:10.1152/ajpheart.00046.2008.—Apelin has been reported to have a positive inotropic action in the isolated rat heart. However, ...
متن کاملDecreased Ca2+ extrusion via Na+/Ca2+ exchange in epicardial left ventricular myocytes during compensated hypertrophy.
Hypertension-induced cardiac hypertrophy alters the amplitude and time course of the systolic Ca2+ transient of subepicardial and subendocardial ventricular myocytes. The present study was designed to elucidate the mechanisms underlying these changes. Myocytes were isolated from the left ventricular subepicardium and subendocardium of 20-wk-old spontaneously hypertensive rats (SHR) and age-matc...
متن کاملCs+ inhibits spontaneous Ca2+ release from sarcoplasmic reticulum of skinned cardiac myocytes.
The effect of Cs+ on the function of the cardiac sarcoplasmic reticulum (SR) has been investigated in skinned cardiac myocytes. Isolated rat ventricular myocytes were permeabilized using saponin and then perfused with a solution containing 150 nmol/l Ca2+ and 10 μmol/l fura 2. Fura 2 fluorescence from the skinned cell was monitored to assess SR Ca2+ release. The frequency of spontaneous Ca2+ re...
متن کاملInterleukin-2 increases activity of sarcoplasmic reticulum Ca2+-ATPase, but decreases its sensitivity to calcium in rat cardiomyocytes.
To further explore the role of interleukin-2 (IL-2) in cardiac function, we investigated its effects on the intracellular calcium transient and the activity of sarcoplasmic reticulum (SR) Ca2+-ATPase in rat cardiomyocytes. IL-2 (200 U/ml) decreased the amplitude of electrically stimulated and caffeine-induced intracellular Ca2+ transients in ventricular myocytes, but increased the end-diastolic...
متن کاملSpontaneous Ca2+ release from the sarcoplasmic reticulum limits Ca2+- dependent twitch potentiation in individual cardiac myocytes. A mechanism for maximum inotropy in the myocardium
We hypothesized that the occurrence of spontaneous Ca2+ release from the sarcoplasmic reticulum (SR), in diastole, might be a mechanism for the saturation of twitch potentiation common to a variety of inotropic perturbations that increase the total cell Ca. We used a videomicroscopic technique in single cardiac myocytes to quantify the amplitude of electrically stimulated twitches and to monito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 294 6 شماره
صفحات -
تاریخ انتشار 2008